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Abstract

A transversely oscillating cylinder in a uniform flow is modeled to investigate frequency effects of flow-induced wake

on lift and drag of the cylinder. Specifically, verified unsteady fluid dynamic simulations using an immersed-boundary

method in a fixed Cartesian grid predict the flow structure around the cylinder and reveal how the integration of surface

pressure and shear distributions provides lift and drag on the oscillating cylinder. In this study, frequency ranges to be

considered are both near and away from the natural frequency of wake vortex shedding. Subsequently, the effects of

frequency lock-in, superposition and demultiplication on lift and drag are discussed based on the spectral analysis of

time histories of lift and drag.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In this study, unsteady fluid dynamic simulations are implemented for flow/cylinder interactions to determine how

oscillation frequencies of the cylinder influence lift and drag. In particular, flow across a transversely oscillating cylinder

is modeled. The result is an effective representation of flow-structure and wave-structure interactions for many

applications of flow and acoustic problems related to flow over bluff bodies, as well as for noise reduction analysis in

measurement microphones [e.g., Zheng and Tan (2003)]. In fact, several research groups have concentrated on

measurement of the near wake of an oscillating cylinder and the related vortex–structure interactions [e.g., Bishop and

Hassan (1964), Griffin (1971), Ongoren and Rockwell (1988), Carberry et al. (2001), Williamson and Roshko (1988),

and Krishnamoorthy et al. (2001)]. Detailed mechanisms have also been reviewed in classic articles such as those of

Sarpkaya (1979), Bearman (1984), Parkinson (1989), Oertel (1990) and Zdravkovich (1997). Furthermore, new

developments in numerical schemes for computational studies of flow over a two-dimensional oscillating cylinder have

been recently reported in, for example, Blackburn and Henderson (1999), Anagnostopoulos (2000), and Guilmineau

and Queutey (2002).

Ultimately, researchers have found that when the oscillation frequency (f) is near the natural von Karman vortex

shedding frequency (f s) of a corresponding stationary cylinder, frequency synchronization occurs. During this

fundamental frequency lock-in, the vortex shedding is entrained by the cylinder motion; hence the vortex shedding
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frequency changes to match the cylinder oscillation frequency. Furthermore, the frequency boundaries for frequency

synchronization are dependent on oscillation amplitude, flow Reynolds number, and flow turbulence level. On the other

hand, when f is appreciably different from f s, complex wave forms contain beats, and several different frequencies can

be produced. This is because the forces on the cylinder are affected by the free fluctuations of the wake and the forced

oscillation of the wake. In addition, n-superharmonic synchronization (or frequency demultiplications, as named by

Bishop and Hassan (1964)) and 1/n-subharmonic synchronization can occur if f is approximately equal to an integer

multiple or division of f s, i.e., when f ¼ nf s or f ¼ f s=n. Under these conditions, the wake still can be entrained to

oscillate at a frequency close to f s.

The purpose of this paper is to investigate how these frequencies influence the lift and drag of the oscillating cylinder.

While the physical processes of formation of the near wake of an oscillating cylinder have been thoroughly investigated

in the above-mentioned literature, to the authors’ knowledge, detailed analyses of how fluid dynamic mechanisms

related to wake vortex shedding influence the spectral contents of lift and drag have not been fully revealed.

Consequently, an immersed-boundary method is used in this study that enables the simulation of flow over an

oscillating cylinder to be carried out in a non-moving Cartesian grid with a stationary coordinate system. Ultimately,

many of the simulated flow features in this study agree with the experimental findings in the literature, whereas the

spectral analysis clearly provides further explanations of the flow physics for frequency responses of lift and drag in the

frequency domain.
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Fig. 1. The drag and lift coefficients of a stationary cylinder at Re ¼ 200. (a) Comparisons of the time histories of the present

computation with those of Guilmineau and Queutey (2002); (b) spectra of CL and CD.
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2. Computation schemes

An immersed-boundary method with a direct compensation force (Zhang and Zheng, 2007), an improvement over

those schemes described in Goldstein et al. (1993), Saiki and Biringen (1996), and Mohd-Yusof (1996), has been

implemented to compute the fluid flow. In the immersed-boundary method, a forcing term is added to the
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Fig. 2. Time histories of CL and CD for the frequency lock-in cases of (a) f ¼ 0:18, (b) f ¼ 0:202 and (c) f ¼ 0:22.
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Navier–Stokes equations to replace the boundary effects that move with the fluid and exert forces on it. There are two

reasons for using the immersed-boundary method: (i) a simple Cartesian grid mesh can be used and there is no need to

put body-fitted grids near the cylinder surface and (ii) moving grids or non-inertial coordinates to accommodate the

motion of the oscillating cylinder are unnecessary in this method.

In the computation, nondimensionalization is characterized with the uniform incoming-flow speed, U, and the

diameter of the cylinder, D. With the immersed-boundary method, the nondimensional equations for incompressible

fluid flow are

qu
qt
þ u � ru ¼ �rPþ

1

Re
r2uþ f (1)

and

r � u ¼ 0, (2)

where f is the body force representing the boundary force. The forcing term f, which functions as a velocity corrector for

the grid points immediately inside the immersed boundary, is prescribed at each time step to establish the desired

boundary moving velocity. For a time-marching scheme, this force can be expressed as

f ¼ Sþ rP�
1

Re
r2uþ

1

Dt
ðv� uÞ (3)
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Fig. 3. Spectra of CL and CD for the frequency lock-in cases of f ¼ 0:18, f ¼ 0:202 and f ¼ 0:22: (a) CL spectra and (b) CD spectra.
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on the boundary, and zero elsewhere, and S is the convection term defined as:

S ¼ ðu � rÞu. (4)

In Eq. (3), v is the desired velocity on a layer of grid points immediately inside the immersed boundary named the

internal layer on which the direct forcing is applied to. More detailed explanations of the concept of immersed-

boundary methods can be found in Zhang and Zheng (2007).

The unsteady, two-dimensional incompressible flow equations, Eq. (1), are solved using a second-order finite volume

scheme on a staggered Cartesian grid. Continuity is enforced by solving a Poisson equation for pressure using a Poisson

solver (Swarztrauber and Sweet, 1979). Given that the time-marching scheme is treated as a two-step

predictor–corrector procedure, the convection terms are discretized using the second-order Adams–Bashforth

method, and the diffusion terms are discretized using the second-order central differencing. In addition, with

suggestions from Saiki and Biringen (1996), the normal direction diffusion terms are advanced implicitly using the

Crank–Nicolson scheme.
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Fig. 4. Snapshots of vorticity contours for a frequency lock-in case of f ¼ 0:202.
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Only a simple arrangement of the computational grids is necessary because of the immersed-boundary method

employed. In this study, a uniform Cartesian grid mesh is used, such that Dx ¼ Dy ¼ 0:025 in all of the computational

cases. In the process of selecting grid size, the grid-size independence test was performed for the stationary cylinder case

to determine the resolution using 0.05, 0.025 and 0.0125. The detailed grid-independence study was presented in a

previous publication (Zhang and Zheng, 2007). The finest grid solution is regarded as ‘‘exact,’’ and the errors of the

solution are computed on the coarser grids. When changing the resolution, the L2-norm of errors shows a �2 slope in

the log–log plot of the norm versus the grid number. This means the overall computational accuracy is second order in

space. The L2-norm for the grid size of 0.025 is approximately 2� 10�4. Based on these test results, the grid size of 0.025

was thus selected, and the computation was performed on a staggered grid mesh. Finally, the domain size, 38:4� 25:6,
was tested to assure an independent solution to domain size. Accordingly, the center of the cylinder is located at 8

from the inlet, which is sufficient to avoid inlet boundary effects (Ravoux et al., 2003), and 12.8 from the top or

bottom boundary.
Fig. 5. Snapshots of vorticity contours for the flow around the oscillating cylinder at the moment when the center of the cylinder is

located at the maximum negative displacement of the cylinder, for the three frequency lock-in cases: (a) f ¼ 0:18, (b) f ¼ 0:202 and

(c) f ¼ 0:22.
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The stability analysis of the scheme yields a stability criterion that is no more restrictive than that of an explicit

scheme for a two-dimensional convection–diffusion equation

dtomin
h2Re

4
;

2

ðu2 þ v2ÞRe

� �
, (5)

where h is the grid size. The first part in the minimum function concerns diffusion, while the second part is the Courant

number related to convection. Clearly, the dimensionless time step used in the computation has to satisfy the stability

condition imposed by Eq. (5) for the Reynolds number and the grid size used in this study. In addition, a more

restrictive condition in selecting the time-step size is to capture sufficiently high frequency phenomena in the flow. With

these two conditions, the time-step size in the computation is thus selected to allow at least 512 time steps in each

oscillation period corresponding to the oscillation frequency.

In the current study, the oscillation in the transverse direction has the dimensionless displacement of

dy ¼ A sinð2pt � f Þ, (6)

where A is the dimensionless amplitude of the oscillating displacement (normalized by the diameter of the cylinder D),

and f is the dimensionless oscillation frequency. The motion described in Eq. (6) is applied to all the immersed

boundary points (i.e., all the points on the cylinder surface), and there is no motion in x direction on the cylinder

surface.

The fidelity of the computation scheme has been verified with numerous experimental and computational data in the

literature for flows over cylinders and spheres (Zhang and Zheng, 2007). Particularly, the computational results of

fluctuation quantities of flow over an oscillating cylinder have been compared with experimental data by Griffin (1971)

at Re ¼ 200 on several r.m.s. velocity-fluctuation profiles, and a very good agreement between the two results has

been achieved, as shown in Zhang and Zheng (2007). Another example for comparison with literature data is shown in

Fig. 1(a), where the time histories of drag and lift coefficients, CD and CL, in the case of a stationary cylinder of the

present computation are compared with those of Guilmineau and Queutey (2002) at Re ¼ 200, which provides further

evidence that the current computational result agrees with others.
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Fig. 6. Snapshots of vorticity contours for the non-synchronization case of f ¼ 0:25.
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3. Analysis of frequency effects

The subsequent analysis is based on the computational results of the lift and drag coefficients determined by

CD ¼

Z 2p

0

p cos ydy�
2

Re

Z 2p

0

qu

qx
cos ydyþ

1

Re

Z 2p

0

qu

qy
þ

qv

qx

� �
sin ydy (7)

and

CL ¼ �

Z 2p

0

p sin ydy�
1

Re

Z 2p

0

qu

qy
þ

qv

qx

� �
cos ydyþ

2

Re

Z 2p

0

qv

qy
sin ydy, (8)

where y starts from the front center on the cylinder surface and increases clockwise. In this study, the desired frequency

range corresponds to a dimensionless frequency (f) range of 0.1–1, characterized by the inflow speed and cylinder

diameter. This range includes 1
2
-subharmonics and up to 5-superharmonics of the natural von Karman vortex shedding

frequency near f s ¼ 0:2. Therefore, in the following cases, the oscillation frequency is ranged to include 1
2
-subharmonics

(f =f s � 0:5), fundamental synchronization (f =f s � 1), 1.5-superharmonics (f =f s � 1:5) and 2- and 3-superharmonics

(f =f s � 2 and 3). The presented spectra are FFTs of the time history of CD and CL fluctuations. For each case, time-

history data of 30 periods (the 1
2
-subharmonic f ¼ 0:1 case), 60 periods (the other oscillation cases), or 90 periods (the
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Fig. 7. CL and CD for the non-synchronization case of f ¼ 0:25: (a) time histories and (b) spectra.
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stationary case) are simulated. The FFT is performed using the data in the last 16 periods (of 30 periods) or the last 32

periods (of 60 periods) or the last 64 periods (of 90 periods), and therefore the spectral resolution is from 0.003125 (the

stationary case) to 0.01875 (the f ¼ 0:6 case) dimensionless frequency units.

In the following simulation cases, the Reynolds number is fixed at 200, and the mean component was already

subtracted out in all the spectra shown in the paper. To begin, the case of a stationary cylinder was first simulated to

determine the natural frequency of vortex shedding. The result, as presented in Fig. 1(b), shows a dominant peak in the

CL spectrum at 0.202, while a peak at 0.404 exists in the CD spectrum. This proves that in the present simulation, the

natural vortex shedding frequency for flow over a stationary cylinder at Re ¼ 200 is 0.202. The resolution in

determining the natural vortex shedding frequency is enhanced by adding zeros to the time-series data. In all the

oscillating cylinder cases, the amplitude for the oscillation, A in Eq. (6), has been fixed at 0.15, except for one case with

A ¼ 1 at f ¼ 0:1.

3.1. Fundamental frequency lock-in

The study presents three cases of fundamental frequency synchronization, and the oscillation frequencies, f, for the

cases of 0.18, 0.202 and 0.22, are near the natural vortex shedding frequency of 0.202. Figs. 2 and 3 are the time histories
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Fig. 8. Snapshots of vorticity contours for 1
2
-subharmonic excitation of f ¼ 0:1 and A ¼ 0:15.
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and fluctuation spectra of CL and CD for these three cases. In this frequency range, the simulated flowfield reveals

the same 2S vortex wake structures shown in Fig. 4 for f ¼ 0:202, as those demonstrated in the experiments by

Ongoren and Rockwell (1988), Williamson and Roshko (1988) and Krishnamoorthy et al. (2001). The term 2S

means two single vortices are shed at each cylinder oscillation cycle, as first determined by Williamson and

Roshko (1988). Noticeably, there is flow both inside and outside the cylinder, since the immersed-boundary

method computes the flow on the entire Cartesian grid without regard to the location of the physical boundary

of the body. The flow structures clearly indicate that frequency lock-in occurs; this means the dominant vortex

shedding frequency shifts to f. Therefore, both the time history and the spectrum of CL show a dominant frequency

at f in each case in Figs. 2 and 3. The lowest peak frequency in the CD spectrum is 2f , because the drag is dominated

by the wake vortex shedding, which creates two vortices in each oscillation cycle. Ostensibly in all three cases,

while the CL spectrum has narrow-band peaks in 1, 3 and 5 harmonics, the CD spectrum has peaks in 2 and

4 harmonics.

In the time histories of the f ¼ 0:22 case in Fig. 2(c), there is a clear beat both in CL and CD, and the frequency

of the beat of 0:02 is the largest common factor of 0:2 and 0:22. This kind of beats also showed in the time-history

simulations by Guilmineau and Queutey (2002) at the frequency ratio of f =f s ¼ 1:1, and did not show in any case

where the ratio was less than 1. Also, the relative magnitude of the beat, in comparison to the oscillating magnitude,

is larger in CD than in CL. This results in a significant high amplitude of the CD spectrum at the low frequency near 0.02

in Fig. 3(b).
Dimensionless Time

C
D
 a

n
d

 C
L

160 200 240 280
-1.5

-1

-0.5

0

0.5

1

1.5

2
CD

CL

Dimensionless Frequency

0 0.2 0.4 0.6 0.8 1

10-4

10-3

10-2

10-1

100

lift

drag

|C
D
| 

a
n

d
 |

C
L
|

<

<

(b)

(a)

Fig. 9. CL and CD for 1
2
-subharmonic excitation of f ¼ 0:1 and A ¼ 0:15: (a) time histories and (b) spectra.
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The f ¼ 0:18 and 0:202 cases are examples of phase-locking synchronization when vortex shedding is in-phase

with the cylinder oscillation. The f ¼ 0:22 case is out-of-phase synchronization when the phase of vortex shedding

is p different from that of cylinder oscillation. Fig. 5 shows the vorticity contours (of the component perpendicular

to the paper surface) near the cylinder for these three cases. At the moment of the snapshot of these contours, the

center of the cylinder is located at the maximum negative displacement of the cylinder. Clearly at this moment,

a vortex sheds from the bottom of the cylinder in the f ¼ 0:22 case, while a vortex sheds from the opposite side in the

other two cases. Ongoren and Rockwell (1988) also observed this in their experiment in the frequency range of

0:85pf =f sp1:17. Approaching f =f s ¼ 1, there is substantial shortening of the vortex length, and just above this

frequency ratio, a switch occurs in the phase of vortex shedding to the opposite side of the cylinder. The described

vortex structure is clearly shown in Fig. 5. In addition, the f ¼ 0:22 case locates almost at the margin of the frequency

range of fundamental synchronization, according to the experimental data in the above-mentioned literature.

The closeness to out-of-phase synchronization may be attributable to the characteristics not seen in the other

two synchronized cases: a wider noise band around the peaks, particularly near f in the CL spectrum, and near 2f in the

CD spectrum.
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Fig. 10. Snapshots of vorticity contours for 1
2
-subharmonic excitation of f ¼ 0:1 and A ¼ 1:0.
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Since f ¼ 0:22 reaches the margin of the frequency range of fundamental synchronization, further increase of the

oscillation frequency causes non-synchronization. Fig. 6 shows vorticity contours and Fig. 7 shows the time histories

and the spectra of CL and CD for the f ¼ 0:25 case. The non-synchronization flow structure in Fig. 6 shows that the

near-wake resembles periodicity both after one period (T) with respect to f ¼ 0:25 and also after 5T=4 because f s ¼ 0:2.
This is also clearly shown in CL spectrum in Fig. 7(b) where, instead of only one peak frequency in the lock-in cases,

two dominant frequencies at 0.25 and 0.2 correspond to the oscillation frequency and the natural vortex shedding

frequency, respectively. In CD spectrum, two peaks, each at twice the peak frequencies in CL spectrum, can be observed.

However, because of the multiple peaks with non-synchronization, these peak levels are less significant than those in the

synchronized cases. Finally, the beat, similar to that in the time history of the f ¼ 0:22 case, is shown in this case too,

which results in a clear peak at the frequency of 0.05 in CD spectrum.
3.2. 1
2
-subharmonic excitation

An oscillation frequency of f ¼ 0:1 is studied for this case, and at this frequency four vortices are shed from the

cylinder during each oscillation cycle, as shown in Fig. 8. Williamson and Roshko (1988) did not find synchronization

pattern at the 1
2-subharmonic oscillation. However, both Ongoren and Rockwell (1988) and Krishnamoorthy et al.

(2001) showed synchronization at this frequency. This is probably because of the smaller oscillation amplitude in the

latter two studies (0:13D and 0:22D, respectively) than in the former one (41:0D). The asymmetric vortex shedding
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pattern described in Williamson and Roshko (1988) is not significant when the oscillation amplitude is small, and

therefore a symmetric synchronization still shows in Ongoren and Rockwell (1988) and Krishnamoorthy et al. (2001).

In the case studied here, since the amplitude is 0:15D, the flow behaves more like that observed by Ongoren and

Rockwell (1988) and Krishnamoorthy et al. (2001). In Fig. 8, the flow structure resemblance occurs at every T=2,
corresponding to the natural vortex shedding frequency of f s ¼ 2f ¼ 0:2, although more complete periodicity is at

every T. Fig. 9(b) shows a significant peak exists at f s ¼ 0:2 in the CL spectrum and at 2f s in the CD spectrum, which is

an evidence of synchronization. The significant peak at the oscillation frequency itself (f ¼ 0:1) in CD spectrum, with

peaks also at the super-harmonics of 0.1, is due to incomplete synchronization, following a wake vortex pattern at the

oscillation frequency itself as shown in Fig. 8.

To test the amplitude effect, cases with different amplitudes were simulated with A ¼ 0:13, 0.15, 0.25, 0.5 and 1.

When A increases, periodicity per half-cycle (corresponding to the natural shedding frequency) is gradually lost, and at

A ¼ 1, non-synchronization is observed. This result supports the statement made above about the effect of amplitude.

The A ¼ 1 result is shown in Figs. 10 and 11. In Fig. 10, it can be seen that the wake structure is not quite periodic after

one cycle of cylinder oscillation, and that vortex shedding does not repeat every half-cycle of cylinder displacement. The

wake structure is not symmetric, which agrees to what is indicated in the work of Williamson and Roshko (1988),

although the 2P structure as illustrated in their paper does not show in Fig. 10. In Fig. 11, while there is still a peak at

the oscillation frequency itself, there is only a small peak that is shifted away from the natural shedding frequency, and

therefore no synchronization exists.
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Fig. 13. CL and CD for 1.5-superharmonic excitation of f ¼ 0:3: (a) time histories and (b) spectra.
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3.3. 1.5-superharmonic excitation

Next, a 1.5-superharmonic excitation case is studied at f ¼ 0:3. At this frequency, both of the experiments by

Ongoren and Rockwell (1988) and Krishnamoorthy et al. (2001) found that the primary vortex shedding frequency is

still the natural shedding frequency, close to f s ¼ 0:2. While no obvious synchronization was found at this frequency,

the simulation in this study, as well as the measurement in these two experiments, shows a large-amplitude coherent

component at f =3 ¼ 0:1 that repeats every three cycles of oscillation. This flow structure can be seen in vorticity

contours in Fig. 12 where the flow resemblance shows after 3T . This can also be seen in the time histories and

fluctuation spectra in Fig. 13. In CL spectrum, dominant peaks are at both 0.2 (f s) and 0.3 (f), showing non-

synchronization. In CD spectrum, a strong peak at 0.1 (f =3) occurs that is related to the f =3 large-amplitude structure.

Correspondingly, peaks at 0.4 (2f s), 0.5, and 0.6 (2f ) appear in CD spectrum. Another significant peak at 1.2 is caused

by the superharmonics of both 0.4 and 0.6.
3.4. 2- and 3-superharmonic excitation

With the 2- or 3-superharmonic excitation, a complex wave-form composed of two simple components with a

frequency ratio of 1
2
or 1

3
can be distinguished, which can be seen clearly in the time history of CL in Figs. 14 and 15 for
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Fig. 14. CL and CD for 2-superharmonic excitation of f ¼ 0:4: (a) time histories and (b) spectra.
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f ¼ 0:4 and f ¼ 0:6, respectively. Every complete cycle of the entrained frequency of natural vortex shedding contains

exactly 2 or 3 cycles of the oscillation frequency, as shown in vorticity contours in Figs. 16 and 17. Therefore the wake

pattern quickly relaxes to the usual von Karman mode. This frequency demultiplication, which occurs when the

oscillation frequency is an integer multiple of the natural vortex shedding frequency, is related to the lift and drag force

synchronization determined by Bishop and Hassan (1964). Based upon visualization and hot film experiments,

Krishnamoorthy et al. (2001) pointed out that at the superharmonic excitation, the dynamics in the formation region

is not synchronized to cylinder motion except for the 3-superharmonic synchronization. They claimed that during the

3-superharmonic excitation, the near-wake dynamics repeated itself every third cycle, and a coherent, synchronized

wake pattern was formed. In our results, both the 1
2
-cycle coherence for the 2-superharmonic excitation and the 1

3
-cycle

coherence for the 3-superharmonic excitation are demonstrated in Figs. 14 and 15. However, the specific difference of

near-wake dynamics between the 2- and 3-superharmonics is not detected in the simulated flow visualization of this

study as shown in Figs. 16 and 17. The CL spectra in Figs. 14(b) and 15(b) show that in both cases there is a peak at

the natural vortex shedding frequency at 0.2 and a peak at the fluctuation frequency (at 0.4 in Fig. 14(b) and 0.6 in

Fig. 15(b)). However, CD spectrum shows differences between the two cases. For instance, 3-superharmonic case shows

significant peaks only at 0.4 (2f s), 0.8 (4f s) and 1.2 (2f), but 2-superharmonic case has peaks also at 0.2 (f s) and

0.6 (3f s), in addition to the peaks at the even-harmonic frequencies at 0.4 (2f s) and 0.8 (2f). This means that
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2-superharmonic case is not as synchronized as 3-superharmonic case. Likely, this is because CD spectrum is usually

related to more subtle flow structure than CL spectrum, as shown in several previous cases.
4. Conclusions

The simulated flow-field with subharmonic and superharmonic cylinder oscillations has been correlated with

phenomena observed in fluid dynamics experiments in the literature. In some cases, high spectral-peak levels of CL and

CD are observable due to the coupling between the oscillations and the natural vortex shedding. Also, near the natural

frequency, frequency lock-in occurs, resulting in significant peaks in the spectra at f for CL and at 2f for CD. Next, away

from the lock-in regime, both peaks at f and f s for CL and at 2f and 2f s for CD are visible. Then, at 1
2
-subharmonic

excitation, both synchronization and incomplete synchronization exist at small oscillation amplitude, with peaks at f s

for CL and at f for CD. When the amplitude is large, no synchronization can be observed. Further, at the 1.5-, 2- and

3-superharmonic excitations, the frequency demultiplication leads to large-amplitude coherent components at

fractions of the excitation frequencies. Finally, in all the superharmonic cases, while CL spectrum shows peaks mostly

at the natural frequency and the excitation frequencies, CD spectrum has peaks at these fractions of the excitation

frequencies.
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